
New Metrics of App 
Testing

W H I T E P A P E R

Pass/Fail Tests Aren’t Enough;  
Metrics Must Be Analyzed Throughout Production for Winning Apps



1

  I   ntroduction

As mobile and desktop advance and more people weave technology  
seamlessly into their everyday lives, how applications function and how 
they’re created, tested and maintained needs to change. We’ve entered a time 
where people expect more from their technology. They expect applications 
to function correctly, run smoothly and not bog down their devices from day 
one. If there is a bug, your users will go elsewhere – they have plenty of options 
and little patience. Companies now need to perform deep metric analysis and 
tweak their apps constantly to ensure apps delight their users in every way 
and provide the best experience possible. Enter continuous testing, Testing 
in Production (TiP) and the rise of modern application metrics.

Adopting a mind-frame that embraces continuous testing and Testing in 
Production will help teams produce higher quality apps in-line with constantly 
shifting user demands. It will also provide them with the metrics  that are 
most important to modern development and real-world success. 

 T  esting in Production

Testing in Production (TiP) is a testing method that advocates releasing 
your product to the public while having developers on hand to monitor and 
immediately fix any bugs. Bear in mind that this method will not work for 
applications that have a vetting process (such as iOS mobile apps). It may 



2

seem like a risky option, but if done correctly, TiP can be extremely useful. 
Testing in Production does not mean releasing an untested app into the 
hands of your users. Today’s users have high expectations for app quality and 
releasing an app with major bugs will sink you before your team has a chance 
to address the in-the-wild issues. Instead, your app should have already gone 
through traditional in-house testing and in-the-wild testing to find the most 
important bugs. TiP can then be used to find additional fringe use cases or 
bugs that appear rarely and only on certain devices.

Continuous Testing & TiP
We’ve reached a point of technology saturation that means companies are 
continuously releasing new versions of their applications. Whether you are 
using a continuous release method or are working to complete a new version 
in its entirety before release, employing continuous testing helps ensure your 
application is as bug free as possible when it hits end users. Testing throughout 
development gives teams more time to find and fix bugs and helps prevent 
bugs from effecting later code. 

Testing in Production (TiP) is a natural extension of continuous testing. By 
the time you near launch, your product should be largely bug free from your 
previous work. This is what makes TiP feasible. Though Testing in Production 
involves releasing your application to the public, keep in mind that this can 
be accomplished through a limited release – either to a subset of users or 
during a lull in activity. This gives you the same end user insight while limiting 
exposure of a potentially faulty product. Since the product is in active use, 
development teams have the ability not only to find bugs that eluded them in 
the lab, but also see if a bug fix works almost immediately. This last line 



3

“It’s no secret that 
products like Bing, 

Amazon, Google and 
Facebook launch 

experiments all the 
time exposing code 

and features to a small 
number of uses. This is 
a powerful way to get 

information on your 
product in real-world 

conditions that simply 
cannot be reproduced in 

a test lab.”
-Seth Eliot

Senior Test Engineer, Test Excellence
Microsoft

of testing defense helps developers 
find and fix issues quickly, before they 
have a major impact.

Another advantage of TiP is that it’s 
a great way to gather data from real 
life use conditions. When testing 
in production, you see how an 
application works for a real user, on 
their actual device, under real-world 
conditions. The only way to replicate 
this kind of insight without releasing 
your application to the public is to 
test in-the-wild with a crowdsourced 
testing company. This window into real 
life use not only reveals bugs missed in 
the lab, it also provides teams with the 
modern metrics they need to create 
the best app possible. By watching 
how an application functions for real 
end users, teams are able to gather 
and act on real metrics to optimize 
applications before they reach a larger 
crowd.

TiP Methods
Testing in Production requires a careful balance between not disturbing 
your uses too much while getting the new release in front of enough eyes to 



4

generate useful information. Here are a few methods (identified by Seth Eliot, 
a Senior Test Engineer of Testing Excellence at Microsoft) that will give you an 
idea of what you should look for and what you can achieve practicing TiP.

•  • Data Mining: Data mining allows you to track real usage patterns and tease out 
defects. It also lends itself to optimization since you can look at statistics from 
before and after changes. Another option is to collect the data in real-time for 
team members to analyze later. This can influence future changes.

•  • User Performance Testing: This issue will come up again when we discuss which 
metrics are most important. As far as testing goes, use TiP to get an idea of how 
your app performs across the hardware/software matrix. Like with data mining, 
this gives you access to real life results from a user’s perspective.

•  • Environment Validation: You can run environment validation during the initial 
launch or collect data continuously. This category involves traditional pass/fail 
tests that look for version compatibility, connection health, installation success 
and other important factors across the user matrix that are hard to replicate on 
a large scale in a lab.

•  • Experimentation for Design: This is your typical A/B test. Divide your users into 
two (or more) groups and give each a different design to see which users respond 
to best.

•  • Load Testing in Production: Release your application into TiP and add synthetic 
load on top of the real users. You’ll be able to see exactly what happens if some-
thing goes wrong when your app is hit with heavy traffic – before you disappoint 
a real tidal wave of visitors. Load testing this way can help you identify issues 
that may not appear in traditional automated load testing – such as images 
not loading properly. Be careful, however, to not affect your app’s load time too 
greatly while testing or you risk driving away the real users.

Ideally, these tests shouldn’t have major adverse effects on users – most 
major issues should have been caught already. Many of these tests can be 
performed traditionally, in ways that don’t involve your real users. With 
that being said, it’s important to remember that your real-life audience will 
be the ones who actually use your application. So do both. Use traditional 
testing methods initially, then use TiP as a sanity check. The first phase (the 
continuous testing) helps you spot important bugs while the second phase 



5

gives you the most accurate and useful information – actionable metrics from 
real users that you can’t get from a controlled environment. 

 T  he Metrics

In addition to traditional pass/fail testing, performance based metrics, 
especially when gleaned from real-life devices, are particularly important 
these days. Users will quickly abandon your application if it is slow to load, 
uses too much memory or doesn’t interact properly with other aspects of 
their device. An end user doesn’t care about how many test cases passed or 
failed, those are useless metrics in the long run. Instead, you need to consider 
metrics like CPU usage, API performance and system response time while 
testing. These are the things your users really care about. 

As technology continues to become more pervasive, everyday users will get 
savvier and more comfortable with the “tech” part of technology. There are 
already a number of consumer-facing applications that help users measure 
their connection speeds, data usage and a variety of other information that 
used to be strictly in the realm of developers and testers. With the glut of 
big data flooding in, it is helpful to focus specifically on the metrics users 
themselves can access. These will be the ones they are paying attention to 
and the ones that will be influencing their use habits. In many cases, ignoring 
these metrics can cost you users – and ultimately revenue.

End Users
What’s the point releasing an application if no one uses it? Testing should 
be extremely end user focused. After all, they’re the ones who will ultimately 
be making you money by using your application. Understanding your end 



6

user can help contain testing costs and looking at metrics from an end users’ 
point of view will help your app succeed. Always test with your end users – 
and their sentiments – in mind. Remember, waiting six seconds for a page to 
load doesn’t seem long on paper, but according to the majority of users, it’s 
long enough for them to give up on your app. This is the mind frame you want 
while looking at metrics.

Don’t waste time testing on devices your target audience likely won’t be using. 
Likewise, don’t only test one device, operating system, browser, etc. Your 
users will be on a multitude of hardware/software combinations and bugs are 
guaranteed to slip though if you don’t test on as many of them as possible. 
Identify the most common combinations within your target demographic and 
begin your testing with those. This is another instance when crowdsourced 
testing or Testing in Production comes in handy. Testing with your actual users 
is a way to be sure you’ve covered the most important matrix considerations.

CPU
Using too much processing power is one of the biggest reasons people 
abandon applications. You absolutely must measure this. Slow response 
time is an indicator to users that something is bogging down their system and 
there are apps available that let users see how much power each application 
is using. If your application is flagged as the biggest abuser, users will likely 
look for a better-tuned replacement, particularly if your app isn’t absolutely 
necessary. Your app isn’t running in a perfect environment. It’s competing 
for space and processing power with a collection of other apps. If your app 
requires too much effort to run, it’ll be the first to go, or it may not even work 
at all.



7

Another important factor to remember – and another reason to monitor CPU 
usage – is that not all devices have the same processing capabilities. By not 
monitoring CPU usage across a range of devices, you may miss some major 
device-specific issues. It is important to particularly monitor and test CPU 
usage as you release new versions, or new popular handsets hit the market. 
Do not assume that because your application was working fine at one point 
that it will always be fine.

API
API requests can also have an effect on the response time of an application. If 
not properly integrated, APIs can slow down an application or completely fail 
to return a desired action. Whether you create a custom API or use an open 
source version, be sure to test the functionality and security of the API itself in 
addition to testing how it works on devices.

Though APIs are now common, the technology is less understood by the 
common user. This should be an even bigger incentive to carefully vet and 
monitor any API requests integrated into your application. Users will recognize 
that something is wrong, but they won’t be able to pinpoint the problem, 
which will lead to general frustration and anger.

Once you move out of initial testing and into a production environment, 
continue to monitor your APIs to ensure outside factors don’t adversely affect 
the application’s quality or the effectiveness of the API’s service.

System Response
Testing CPU usage and APIs requests isn’t enough to ensure good system 
response time – there is still a lot more to look at specifically related to system 
performance.



8

Measuring system response time has its own set of sub-metrics. Nexcess, a 
web hosting company, highlights these specific measurements:

•  • Payload: The total size in bytes sent to the test app, including all resource files.

•  • Bandwidth: The minimal bandwidth in Bps across all network links from client 
to server.

•  • AppTurns: The number of components (images, scripts, CSS, etc.) needed for the 
page to render.

•  • Round-Trip Time: The amount of time (milliseconds) it takes to communicate 
from client to server.

•  • Concurrency: The number of simultaneous requests an app will make for re-
sources.

•  • Server Compute Time: The time it takes for the server to parse the request, run 
application code, fetch data and compose a response.

•  • Client Compute Time: The time it takes for the application to render client-facing 
features.

When testing system response, be sure to look at how long an action takes 
to complete from start to finish – from the second a user hits a button to 
the second the app finishes loading. Is the app usable before it’s completely 
loaded? If so, which features are available first? Are they useful ones that will 
keep your users happy or secondary features that will only remind uses that 
they’re still waiting for the real deal? 

It is imperative you monitor system response under real world situations. 
Tests that only look at server-side response won’t account for real use factors 
that can drastically increase the time it takes for the action to complete in 
the user’s eyes. Some information may not return fully, information cached 
in browsers could have trouble loading, some data centers may have slower 
response times than others, a variety of things could go wrong that you won’t 
know about unless you are monitoring real users in real situations.



9

“Billions of dollars in 
revenue are lost each 

year by websites that are 
unable to measure and 
control client perceived 

response time. Clients 
get frustrated and 

leave websites before 
completing a transaction, 

often never to return.”
-Software Systems Laboratory,

Columbia University

 T  ips

Now you know what to monitor 
once your application is released 
to the public, but what if you  
turn up a problem? Here’s a few 
recommendations that will help you 
process the data you’re collecting and 
troubleshoot issues if they arise.

API Issues
The best way to avoid API issues is 
to reduce API request complexity. 
Couple as many queries as possible 
instead of sending many individual 
requests. Similarly, if you are working 
with an application that has caching 
capabilities, figure out which items you 
can cache to cut down on the amount 
of data that needs retrieving every time your app is used.

It’s also extremely important to remember that APIs can be affected by 
platform version, particularly within the Android ecosystem. Each version of 
the Android operating system only supports specific API classes. Identify the 
most popular devices within your target demographic and see what platform 
versions those devices support – it is often not the most recent platform 
release. Tailor your API integration to work with the dominate platform version 
(and remember to update as the new versions disseminate).



10

System Response Best Practices
How you measure system response time can drastically affect the data. 
Here are a few tips for collecting system response data that will most closely 
resemble what your users are experiencing. 

•  • Work with percentiles, not averages. Taking a broad measurement and finding 
the average response speed will not give you an accurate portrayal. This prac-
tice disregards the top and bottom speeds (important information) and doesn’t 
give you any idea of how many users are experiencing what speeds. Measuring 
response speed and dividing the data into percentile designations will give you 
a clearer picture of the dominate response speed. If the biggest percentile has 
slow response times, you have an issue.

•  • Not all performance data is the same. Don’t lump initial load time with response 
time for logging in – they are two separate actions and should be analyzed as 
such. One action may be slower than others (especially if an action relies on API 
calls) but if you look at all response time data together you will not know which 
action needs addressing.

•  • Cache what you can. Like with API requests, caching whatever data you can will 
reduce response time.

 C  onclusion

Understanding that these metrics are important – and often accessible – to 
your users is a vital part of modern application development and testing. You 
cannot push aside data like CPU usage, API response and system response 
time and deal with it another day. Users will notice the issues and know that 
it isn’t a price they have to pay for the technology. They can – and will – go 
elsewhere. 

But don’t be overwhelmed by the flood of big data. Take advantage of testing 
methods such as continuous testing and Testing in Production to help 
you not only find and fix bugs, but see your application from an end user’s 



11

perspective. Meaningful metrics are more important than a mountain of data. 
Knowing what deserves attention and what’s just noise will help you focus 
going forward. These practices will become even more important as people 
continue to become more involved with their everyday technology and as 
more metrics become available.



12

Applause empowers companies of all sizes to deliver great digital experiences 
(DX) – across web, mobile and IoT as well as brick-and-mortar – spanning every 
customer touchpoint. 

Applause delivers unmatched in-the-wild testing, user feedback and research 
solutions by utilizing its DX platform to manage communities around the world. 
This provides brands with the real-world insights they need to achieve omni-
channel success across demographics, locations, devices and operating systems 
that match their user base. 

Thousands of companies – including Google, FOX, Best Buy, BMW, PayPal 
and Runkeeper – rely on Applause to ensure great digital experiences for their 
customers. Learn more at www.applause.com. 

 A  bout Applause

Americas Inquiries

Applause U.S. HQ
100 Pennsylvania Ave
Suite 500
Framingham, MA 01701 
1-844-300-2777 

Europe Inquiries
 
Applause Europe HQ
Kopenicker Str. 154
10997 Berlin, Germany
+49 30 57700400

Israel Inquiries
 
11 Galgaley Haplada
1st Entrance - 2nd Floor
Herzliya, Israel
+972.74.701.4240
 

http://www.applause.com

